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Analytical investigation of innovation dynamics considering stochasticity in the evaluation
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We investigate a selection-mutation model for the dynamics of technological innovation, a special case of
reaction-diffusion equations. Although mutations are assumed to increase the variety of technologies, not their
average successfitness”), they are an essential prerequisite for innovation. Together with a selection of
above-average technologies due to imitation behavior, they are the “driving force” for the continuous increase
in fitness. We will give analytical solutions for the probability distribution of technologies for special cases and
in the limit of large times. The selection dynamics is modeled by a “proportional imitation” of better tech-
nologies. However, the assessment of a technology’s fitness may be imperfect and, therefore, vary stochasti-
cally. We will derive conditions under which a wrong assessment of fithess can accelerate the innovation
dynamics, as has been found in some surprising numerical investigations.
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INTRODUCTION in the average fitness would have to be a consequence of the
| ion d ics h v b died b assumed imitation of superior technologies.
nnovation dynamics has not only been studied by €Cono- - paients on the leading technologies could suppress such

mists ?nd soua:jsme_ntls(seg referencesb|f11]r)], bu'{tgso imitation and, therefore, potentially reduce the speed of
recently attracted an increasing interest by physidistS]. 6y ation—i.e., the increase in the average fitness of tech-

Ebeling and co-workers, for example, investigate the COmpe; ) ies However, under certain conditions, a misperception

tition of an innovation with already established technologiesof fitness value§l] seems to neutralize or even overcompen-
[4'?]' i . h lecti . ._sate for such a deceleration eff¢®. Our Brief Report will

! a wider pgrspe_ctwe, the se ectlon-mutuauon equatlc_)n{,ry to achieve an analytical understanding of these interesting
discussed in this Brief Report are a special case of reaCt'orﬁndings
diffusion equations, where technological imitation processes '

are analogous to chemical reactions and diffusion originates ~ FORMULATION OF THE INNOVATION MODEL

from mutation processes. Due to their nonlinearity, reaction- For the sake of analytical treatment, let us assume a con-
mutation equations are known to display interesting pattern., o5 spectrum of possible fitness valuesoreover, let
formation phenomena such ¢epira) waves[6,7] or Turing  p(y 4 4y represent the probability with which the applied
patterng 7,8]. However, this subject will not be the focus of technology of a company has a fitness value betweand

this Brief Report. Instead, we will try to understand Some, | 4y at timet. In addition, we will assume that companies

surprising obgervations in a microsimulation model of inno'imitate technologies with a higher fitness-x and that the
vatgn c_iynamlt(_:s by S;a:rﬁg]. that th f imitation rate increases proportionally with the related in-
L," |tnncr)]va||on mo ebassumes (;i b € s“l;_?cess”o iconé'reasez—x in success. Iz—x is negative, the imitation rate
pany's technology can be expressed by a Miness: VAU g, 14 pe zero. Then, given that the presently applied tech-
The technologies of superior companies are imitétegied nology has the fitnesx, the respective imitation rate

with a certain prqbablllty per !m't t|m¢ spec!ﬂ_eg Iater.'More- w;,(z|x,t) to copy another technology of fitnesss [10,11]
over, all companies perform innovative activities, which are

modeled by random mutations of the currently applied tech- w;(Zx,t) = AP(z,t)max(z - x,0), )
nologies. Assuming a Brownian motion for the mutation of
fitness values, they change from some valuat timet to
some other value at timet+At with a Gaussian transition

as the imitation rate is proportional to the occurrence prob-
ability densityP(z,t) of the imitated technology. The pa-

probability rameterA >0 has the meaning of an imitation frequency.
In order to calculate the change of the occurrence prob-
~[z(t + At) - x(H)]4(26vA) ability densityP(x,t) due to imitation processes, we have to
p(z(t + At)[x(1)) = , - (1) insertw(z|x,t)=w;(z|x,t) into the continuous master equa-
V2w OvAt .
tion [11-13
Here, v is the frequencypAt the number, and/6 the stan- dP(x,t)
dard deviationaverage sizeof mutations. According to Eq. Tat f dZw(xzt)P(zt) —w(zZx,)P(x,1)],  (3)

(1), mutations may be beneficial, but they may also decrease
the fitness of technologies. Therefore, the observed increasghich leads to
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' FIG. 1. (Color online (a) Computer simulation of E¢.7) with
D=1 and A=0.1. Starting with a two-peak initial distribution

because of the normalization conditigdzR(z,t)=1. Equa- P(x,0), one can see that the superposition law does not apply due to
the nonlinearity of our innovation model. Nevertheless, after some

tion (5) is related to the selection equation from evolutlonarytime (t=5) we find the Gaussian distributiofid). (b) After the

biology [14,13 and to the game-dynamical equations. .. : 3 M

. . . ... initially developing skewness(t) =((x—(x);)°);/ Var(x)>'< has van-
[10,11,15. In order to take into account new inventions, with ished (t="5), the variance Vafx) grows linearly and the mean fit-
p(t+AY|x(®) |

ness(x); quadratically, in accordance with Eq4.6) and (17).
At

w(Zx,t) = lim
At—0

w;(Z|x,t), (6)

dynamic solution and, where possible, for explicit analytical
we will additionally assume random transitions to other tech-expressions. In the limiting case=0=D of no mutation and
nologiesz with the ratewy(z|x,t)=w(z|x,t) -wy(z|x,t). Ac-  no diffusion, all companies will eventually imitate the tech-
cording to this, we simply treat inventions as unbiased rannology with the highest fitness—i.e., lim_ .P(x,t)
dom mutations, which may either increase or decrease the§x-x,,), where 8(x) denotes Dirac’s delta function. In
fitness of the pursued technology, as in comyitexhnologi-  the limiting case\ =0 of no imitation, Eq(7) is just a linear
cal) systems it is sometimes hard to judge before whethegiffusion equation, and its solution is a superposition of
some change will cause an improvement or not. Although thgsaussian distributions with a linear-in-time increasing vari-
assumption of unbiasedness may be questioned, it is favognce Dt:
able to gain nontrivial conclusions. The resulting equation
for the temporal change d?(x,t) can be approximated by P(x.) :fdz

If we initially have a two-point distributiorP(x, 0)=p; &(x

—X1) +p28(X—X,) with p;+p,=1, both peaks will become

the following Fokker-Planck type of equati¢h6):
broader due to diffusion similarly to Eq10). At the same

time, however, imitation tends to favor the peak around the
superior technology’s fitness, while the peak around the in-
ferior technology’s fitness will eventually disappear. After
some time, one finds a unimodal, almost Gaussian distribu-
tion, if A andD are constant; see Fig. 1.

Therefore, let us investigate how a Gaussian distribution

Pz0) _
—¢€

V4Dt

X - 2)2/(4Dt) ) (10)

dP(x,1)
ot

PP(x,1)

ax?

=\P(x,1) x—JdZZP(Z,t) +D

D ——

:<x>1

()

The quantityD=v6/2 has the meaning of a diffusion coeffi-
cient. For the mean fitnegg); one can derive the differential
equation[11,13

M = \Var(x), (8) develops in time. We will show that the nonlinear equation
dt (7) has, then, a special solution of the form
while for the variance Vax) ={(x—(x))?);, we find 1
P(x,t) = e fO1729(0)] (11)
dVar,(x) 2wt '
SR (- (900 + 2D. ©) o0

where f(t) denotes the mean value ag@) the variance of
The term((x—(x),)*), disappears if the distributioR(x,t) has ~ the fitness valuex. Applying the product, quotient, and
a vanishing skewnesg—e.g., for a Gaussian distribution. chain rules of differential calculus, we find

Equation(8) shows that the diversity V&k) is a key factor P 2Ax- ()]

for a high innovation speed(x),/dt. P(x,t), (12
Equation(7) can be viewed as a special case of reaction- X 29(t)

diffusion equation$6,7], where the diffusion term originates

from mutations and the nonlinear reaction term from imita- #PP(x,1) 1 2[x - f(t)] | ?

tive pair interactiong10,11]. It is known to have a compli- e @P(X't) - 29(t) PO

cated formal solution, which is uniquely determined by the )

initial condition[11,13. However, this does not help us here. - _ iP(x t) + [x-f(®)] P(x.t) (13)

We are rather looking for a qualitative understanding of the gty g(t)? Y
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dg PPNl
P __Ldt [x= O, b
a 29 g(t) ’
- tor
+ EWP(X’t). (14

Comparing the expression fa@P(x,t)/t with the one for
#P(x,t)/x? shows that Eq(11) implies

dg(t) UL
T ,yZP(x,t)+[X f(t)] at b, (15
at ) Ix? g(t) o

Considering {(x—(x)p)%)=0, f(t)=(x);, g(t)=Var(x), and
Egs. (8) and (9), this partial differential equation indeed
agrees with Eq(7). Therefore, Eq(11) is the unique solu-
tion if the initial condition is a Gaussian distribution. The

existence of such a generalized diffusion solution is quite

surprising in view of the nonlinearity of Ed7). This re-

minds one of the exact solution of the nonlinear Burgers

equation[17].
In the previously assumed caBe=const of constant mu-
tation activity, we obtain

g(t) =g(0) + 2Dt, (16)

f(t) = f(0) + Ag(0)t + ADt2. (17)

However, forD(t)=Cyg(t)—i.e., if the overall mutation ac-
tivity were proportional to the variety of existing
technologies—we would find an exponential growth

g(t) = g(0)e*d, (18)
_ _xg(0)> A(O) e,
f(t)—(f(O) 2C, + 2C, e?Cot, (19

Finally, for D(t)=C,f(t)—i.e., if the overall mutation activity
were proportional to the average fitne@nd the related
profits—we would expect

—

— \a(0 R
f(t) = f(0)cosHV2\C,t) + ! %) sinh(v2\Cyt). (20)
vzl

In summary, starting with a normal distribution of tech-
nologiesx, the solution of Eq(7) stays normally distributed,
but the averagé(t) and variance(t) depend significantly on
the diffusion coefficientD and, hence, on the mutation
activity—i.e., v and 6. If the diffusion coefficient stays con-
stant, the average fithess grows quadratically in time, while i
tends to grow exponentially, if the diffusion coefficient in-
creases proportionally to the mean vafiig or the variance
g(t) of the fitness of technologies. An exponential growth is
probably the more realistic scenarigee, for example,
Moore’s law).

IMPERFECT EVALUATION OF FITNESS

Let us now discuss a generalization of the above mode
assuming that the fitness is not assessed exactly. For this,
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¢ denote the difference between the perceived fithess and the
actual fitnesx of a technology and+{ the perceived fithess
of a technology with fitnesz. In this case, we have the
formula

Wy(Zx,t) =X maxz+ { - x— & 0)P(zt) (21

and study the probability densit?’(x, &,t) =P (§)P(x,t),
where P,(¢) denotes the conditional probabilif§(&|x) that
the error in the fithess estimatedsgiven the actual fithess is
Xx. The following normalization relation applied:déP, (&)
=1. Therefore, the resulting differential equation for the dis-
tribution P(x,t) of fitness values becomes

e f dEP(&) =\ f di f it f dePA(©)

[ —
=1

XPx,t)P()P(z,t)x+E-2-0)
PP (x,1)

an?

+D dép (é).

[ —
=1

(22)

The solution of this equation depends crucially on the
distribution P,(¢€) and can, in general, not be analytically
determined. We will, therefore, restrict ourselves to deriving
a generalization of Eq(8) in order to see how imperfect
evaluation of a technology'’s fitness affects the temporal evo-
lution of the average fitness, if at all. Applying the method of
partial integration to the diffusion term twice and defining
the mean value of a functioB(x, ¢,z,¢,t) by

<G>t:fdxf dffdzJ d{G(x,&,2,4,t)

X P P(&P(Z)PLY), (23)
we obtain
d{x); _ f dxXaP(x,t)
dt ot
:)\fdxf dgfdzf dZP(x, )Py (&)P(z,t)
X P& (X% + x& = Xxz— X{) (24
2
+D f dxxa P(>2<,t)
oX
i = NG+ (X&) = (XD = (X)) (25)
D J d &P (26)
+ )cdx2 (x,2).
Y
With  (2=(X);, (=D X=X Cowu(x,{)=0,
ICow(x, & =(x&— (X&), and analogous relationships, we

fend
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d(X) reactions. Imitation has an effect comparable to the selection
s A Var(x) + Cou(x,§)]. (27)  of above-average strategies in similar equations of biological
evolution. Inventions have been modeled as unbiased, ran-

Compared to Eq(8), imperfect perception of fitness re- dom mutations. They may improve the fitness of technolo-
sults in the additional term Cegx, &). Accordingly, misper- gies or deteriorate them. As a consequence, the observed
ception does not have any influence on the dynamics if théncrease of the average fitness requires a selection process.
deviations¢ are statistically independent &for P,(¢) is not ~ However, a selection process alone also does not cause a
a function ofx. If Cov,(x, &) <0—i.e., if the fitness of lead- persistent increase in the average fitness: If the mutation fre-
ing technologies is systematically underestimated, while inquency» and the diffusion coefficierD are 0, the fitness of
ferior technologies are overestimated—misperception slow8ll technologies converge to the highest initial fitness and
down the increase of the average fitness. However, mispestay there. Only if both random mutations of technologies
ception will speed up the evolution of better technologies ifand imitation are combined, we have a steady growth of the
Cov(x,&>0—i.e., if leading technologies are overesti- average fitness, so that after some time even a bad technol-
mated. This is actually the case in the simulation model bypgy will be replaced by another one which is much better
Saam[9], as it assumes that only the technology of the firmthan the initially leading technology. Interestingly, the speed
with the bestperceived fitness is copied, while other firms of the average increase in fitness is proportional to the vari-
are never imitated, even if their technologies are better thagnce in the fitness of technologies. Therefore, copying other
the own one. The same simulation study has shown that agPmpanies’ technologies alone does not support a persistent
overestimation of thmpparenﬂybest techno|ogy can even innovatioh trend.. Instead, diversity is the “motor” or “driving
compensate for inhibitory effects of patents, which were asforce” of innovation.

sumed to suppress the imitation of thetually fittest tech- Finally, we have investigated the effect of misperception
nology [9]. of the fitness of technologies. It turned out that mispercep-
tion can be neutral, but it can also speed up or slow down

SUMMARY technological evolution. Our results indicated that the aver-

age fitness will grow faster if the leading technologies are

In this Brief Report, we have analytically investigated the systematically overestimated and the fitness of inferior tech-

dynamics of a selection- mutation model for technologicalnologies is underestimated. Therefore, excitement for new

innovations, which can be viewed as a special reactiontechnologies can speed up innovations even without higher

diffusion model, but without emergent pattern formationinvestments, just because of a bias in the perception of

based on a Turing instabilify7,8]. In our case, the imitation fitness—i.e., a bias in the imitation behavior of superior tech-
of better technologies plays a role analogous to chemicatologies.
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