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We investigate a selection-mutation model for the dynamics of technological innovation, a special case of
reaction-diffusion equations. Although mutations are assumed to increase the variety of technologies, not their
average successs“fitness”d, they are an essential prerequisite for innovation. Together with a selection of
above-average technologies due to imitation behavior, they are the “driving force” for the continuous increase
in fitness. We will give analytical solutions for the probability distribution of technologies for special cases and
in the limit of large times. The selection dynamics is modeled by a “proportional imitation” of better tech-
nologies. However, the assessment of a technology’s fitness may be imperfect and, therefore, vary stochasti-
cally. We will derive conditions under which a wrong assessment of fitness can accelerate the innovation
dynamics, as has been found in some surprising numerical investigations.
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INTRODUCTION

Innovation dynamics has not only been studied by econo-
mists and social scientistsssee references inf1gd, but also
recently attracted an increasing interest by physicistsf1–3g.
Ebeling and co-workers, for example, investigate the compe-
tition of an innovation with already established technologies
f4,5g.

In a wider perspective, the selection-mutuation equations
discussed in this Brief Report are a special case of reaction-
diffusion equations, where technological imitation processes
are analogous to chemical reactions and diffusion originates
from mutation processes. Due to their nonlinearity, reaction-
mutation equations are known to display interesting pattern-
formation phenomena such assspirald wavesf6,7g or Turing
patternsf7,8g. However, this subject will not be the focus of
this Brief Report. Instead, we will try to understand some
surprising observations in a microsimulation model of inno-
vation dynamics by Saamf9g.

Our innovation model assumes that the success of a com-
pany’s technology can be expressed by a “fitness” valuex.
The technologies of superior companies are imitatedscopiedd
with a certain probability per unit time specified later. More-
over, all companies perform innovative activities, which are
modeled by random mutations of the currently applied tech-
nologies. Assuming a Brownian motion for the mutation of
fitness values, they change from some valuex at time t to
some other valuez at time t+Dt with a Gaussian transition
probability

p„zst + Dtduxstd… =
e−fzst + Dtd − xstdg2/s2unDtd

Î2punDt
. s1d

Here,n is the frequency,nDt the number, andÎu the stan-
dard deviationsaverage sized of mutations. According to Eq.
s1d, mutations may be beneficial, but they may also decrease
the fitness of technologies. Therefore, the observed increase

in the average fitness would have to be a consequence of the
assumed imitation of superior technologies.

Patents on the leading technologies could suppress such
imitation and, therefore, potentially reduce the speed of
innovation—i.e., the increase in the average fitness of tech-
nologies. However, under certain conditions, a misperception
of fitness valuesf1g seems to neutralize or even overcompen-
sate for such a deceleration effectf9g. Our Brief Report will
try to achieve an analytical understanding of these interesting
findings.

FORMULATION OF THE INNOVATION MODEL

For the sake of analytical treatment, let us assume a con-
tinuous spectrum of possible fitness valuesx. Moreover, let
Psx,tddx represent the probability with which the applied
technology of a company has a fitness value betweenx and
x+dx at time t. In addition, we will assume that companies
imitate technologies with a higher fitnessz.x and that the
imitation rate increases proportionally with the related in-
creasez−x in success. Ifz−x is negative, the imitation rate
should be zero. Then, given that the presently applied tech-
nology has the fitnessx, the respective imitation rate
w1szux,td to copy another technology of fitnessz is f10,11g

w1szux,td = lPsz,tdmaxsz− x,0d, s2d

as the imitation rate is proportional to the occurrence prob-
ability densityPsz,td of the imitated technologyz. The pa-
rameterl.0 has the meaning of an imitation frequency.

In order to calculate the change of the occurrence prob-
ability densityPsx,td due to imitation processes, we have to
insert wszux,td=w1szux,td into the continuous master equa-
tion f11–13g

dPsx,td
dt

=E dzfwsxuz,tdPsz,td − wszux,tdPsx,tdg, s3d

which leads to
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s4d

s5d

because of the normalization conditionedzPsz,td=1. Equa-
tion s5d is related to the selection equation from evolutionary
biology f14,13g and to the game-dynamical equations
f10,11,15g. In order to take into account new inventions, with

wszux,td = lim
Dt→0

p„zst + Dtduxstd…
Dt

+ w1szux,td, s6d

we will additionally assume random transitions to other tech-
nologiesz with the ratew0szux,td=wszux,td−w1szux,td. Ac-
cording to this, we simply treat inventions as unbiased ran-
dom mutations, which may either increase or decrease the
fitness of the pursued technology, as in complexstechnologi-
cald systems it is sometimes hard to judge before whether
some change will cause an improvement or not. Although the
assumption of unbiasedness may be questioned, it is favor-
able to gain nontrivial conclusions. The resulting equation
for the temporal change ofPsx,td can be approximated by
the following Fokker-Planck type of equationf16g:

s7d

The quantityD=nu /2 has the meaning of a diffusion coeffi-
cient. For the mean fitnesskxlt one can derive the differential
equationf11,13g

dkxlt

dt
= lVartsxd, s8d

while for the variance Vartsxd=ksx−kxltd2lt, we find

dVartsxd
dt

= lksx − kxltd3lt + 2D. s9d

The termksx−kxltd3lt disappears if the distributionPsx,td has
a vanishing skewnessg—e.g., for a Gaussian distribution.
Equations8d shows that the diversity Vartsxd is a key factor
for a high innovation speeddkxlt /dt.

Equations7d can be viewed as a special case of reaction-
diffusion equationsf6,7g, where the diffusion term originates
from mutations and the nonlinear reaction term from imita-
tive pair interactionsf10,11g. It is known to have a compli-
cated formal solution, which is uniquely determined by the
initial conditionf11,13g. However, this does not help us here.
We are rather looking for a qualitative understanding of the

dynamic solution and, where possible, for explicit analytical
expressions. In the limiting casen=0=D of no mutation and
no diffusion, all companies will eventually imitate the tech-
nology with the highest fitnessxmax—i.e., limt→`Psx,td
=dsx−xmaxd, where dsxd denotes Dirac’s delta function. In
the limiting casel=0 of no imitation, Eq.s7d is just a linear
diffusion equation, and its solution is a superposition of
Gaussian distributions with a linear-in-time increasing vari-
ance 2Dt:

Psx,td =E dz
Psz,0d
Î4pDt

e−sx − zd2/s4Dtd. s10d

If we initially have a two-point distributionPsx,0d=p1dsx
−x1d+p2dsx−x2d with p1+p2=1, both peaks will become
broader due to diffusion similarly to Eq.s10d. At the same
time, however, imitation tends to favor the peak around the
superior technology’s fitness, while the peak around the in-
ferior technology’s fitness will eventually disappear. After
some time, one finds a unimodal, almost Gaussian distribu-
tion, if l andD are constant; see Fig. 1.

Therefore, let us investigate how a Gaussian distribution
develops in time. We will show that the nonlinear equation
s7d has, then, a special solution of the form

Psx,td =
1

Î2pgstd
e−fx − fstdg2/f2gstdg, s11d

where fstd denotes the mean value andgstd the variance of
the fitness valuesx. Applying the product, quotient, and
chain rules of differential calculus, we find

]Psx,td
]x

= −
2fx − fstdg

2gstd
Psx,td, s12d

]2Psx,td
]x2 = −

1

gstd
Psx,td + H−

2fx − fstdg
2gstd J2

Psx,td

= −
1

gstd
Psx,td +

fx − fstdg2

gstd2 Psx,td, s13d

FIG. 1. sColor onlined sad Computer simulation of Eq.s7d with
D=1 and l=0.1. Starting with a two-peak initial distribution
Psx,0d, one can see that the superposition law does not apply due to
the nonlinearity of our innovation model. Nevertheless, after some
time stù5d we find the Gaussian distributions11d. sbd After the
initially developing skewnessgstd=ksx−kxltd3lt /Vartsxd3/2 has van-
ishedstù5d, the variance Vartsxd grows linearly and the mean fit-
nesskxlt quadratically, in accordance with Eqs.s16d and s17d.
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]Psx,td
]t

= −
1

2

dg

dt

gstd
Psx,td +

fx − fstdg
df

dt

gstd
Psx,td

+
1

2

dg

dt
fx − fstdg2

gstd2 Psx,td. s14d

Comparing the expression for]Psx,td /]t with the one for
]2Psx,td /]x2 shows that Eq.s11d implies

]Psx,td
]t

=

dgstd
dt

2

]2Psx,td
]x2 +

fx − fstdg
dfstd

dt

gstd
Psx,td. s15d

Considering ksx−kxltd3lt=0, fstd=kxlt, gstd=Vartsxd, and
Eqs. s8d and s9d, this partial differential equation indeed
agrees with Eq.s7d. Therefore, Eq.s11d is the unique solu-
tion if the initial condition is a Gaussian distribution. The
existence of such a generalized diffusion solution is quite
surprising in view of the nonlinearity of Eq.s7d. This re-
minds one of the exact solution of the nonlinear Burgers
equationf17g.

In the previously assumed caseD=const of constant mu-
tation activity, we obtain

gstd = gs0d + 2Dt, s16d

fstd = fs0d + lgs0dt + lDt2. s17d

However, forDstd=C0gstd—i.e., if the overall mutation ac-
tivity were proportional to the variety of existing
technologies—we would find an exponential growth

gstd = gs0de2C0t, s18d

fstd = S fs0d −
lgs0d
2C0

D +
lgs0d
2C0

e2C0t. s19d

Finally, for Dstd=C1fstd—i.e., if the overall mutation activity
were proportional to the average fitnesssand the related
profitsd—we would expect

fstd = fs0dcoshsÎ2lC1td +
Îlgs0d
Î2C1

sinhsÎ2lC1td. s20d

In summary, starting with a normal distribution of tech-
nologiesx, the solution of Eq.s7d stays normally distributed,
but the averagefstd and variancegstd depend significantly on
the diffusion coefficientD and, hence, on the mutation
activity—i.e.,n andu. If the diffusion coefficient stays con-
stant, the average fitness grows quadratically in time, while it
tends to grow exponentially, if the diffusion coefficient in-
creases proportionally to the mean valuefstd or the variance
gstd of the fitness of technologies. An exponential growth is
probably the more realistic scenariossee, for example,
Moore’s lawd.

IMPERFECT EVALUATION OF FITNESS

Let us now discuss a generalization of the above model,
assuming that the fitness is not assessed exactly. For this, let

j denote the difference between the perceived fitness and the
actual fitnessx of a technology andz+z the perceived fitness
of a technology with fitnessz. In this case, we have the
formula

w1szux,td = l maxsz+ z − x − j,0dPsz,td s21d

and study the probability densityP8sx,j ,td=PxsjdPsx,td,
wherePxsjd denotes the conditional probabilityPsj uxd that
the error in the fitness estimate isj, given the actual fitness is
x. The following normalization relation applies:edjPxsjd
=1. Therefore, the resulting differential equation for the dis-
tribution Psx,td of fitness values becomes

s22d

The solution of this equation depends crucially on the
distribution Pxsjd and can, in general, not be analytically
determined. We will, therefore, restrict ourselves to deriving
a generalization of Eq.s8d in order to see how imperfect
evaluation of a technology’s fitness affects the temporal evo-
lution of the average fitness, if at all. Applying the method of
partial integration to the diffusion term twice and defining
the mean value of a functionGsx,j ,z,z ,td by

kGlt =E dxE djE dzE dzGsx,j,z,z,td

3 Psx,tdPxsjdPsz,tdPzszd, s23d

we obtain

dkxlt

dt
=E dxx

]Psx,td
]t

= lE dxE djE dzE dzPsx,tdPxsjdPsz,td

3Pzszdsx2 + xj − xz− xzd s24d

+ DE dxx
]2Psx,td

]x2

= lfkx2lt + kxjlt − kxzlt − kxzltg s25d

s26d

With kzlt=kxlt, kjlt=kzlt, kxzlt=kxltkzlt, Covtsx,zd=0,
Covtsx,jd=kxjlt−kxltkjlt, and analogous relationships, we
find
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dkxlt

dt
= lfVartsxd + Covtsx,jdg. s27d

Compared to Eq.s8d, imperfect perception of fitness re-
sults in the additional term Covtsx,jd. Accordingly, misper-
ception does not have any influence on the dynamics if the
deviationsj are statistically independent ofx or Pxsjd is not
a function ofx. If Covtsx,jd,0—i.e., if the fitness of lead-
ing technologies is systematically underestimated, while in-
ferior technologies are overestimated—misperception slows
down the increase of the average fitness. However, misper-
ception will speed up the evolution of better technologies if
Covtsx,jd.0—i.e., if leading technologies are overesti-
mated. This is actually the case in the simulation model by
Saamf9g, as it assumes that only the technology of the firm
with the bestperceived fitness is copied, while other firms
are never imitated, even if their technologies are better than
the own one. The same simulation study has shown that an
overestimation of theapparentlybest technology can even
compensate for inhibitory effects of patents, which were as-
sumed to suppress the imitation of theactually fittest tech-
nology f9g.

SUMMARY

In this Brief Report, we have analytically investigated the
dynamics of a selection- mutation model for technological
innovations, which can be viewed as a special reaction-
diffusion model, but without emergent pattern formation
based on a Turing instabilityf7,8g. In our case, the imitation
of better technologies plays a role analogous to chemical

reactions. Imitation has an effect comparable to the selection
of above-average strategies in similar equations of biological
evolution. Inventions have been modeled as unbiased, ran-
dom mutations. They may improve the fitness of technolo-
gies or deteriorate them. As a consequence, the observed
increase of the average fitness requires a selection process.
However, a selection process alone also does not cause a
persistent increase in the average fitness: If the mutation fre-
quencyn and the diffusion coefficientD are 0, the fitness of
all technologies converge to the highest initial fitness and
stay there. Only if both random mutations of technologies
and imitation are combined, we have a steady growth of the
average fitness, so that after some time even a bad technol-
ogy will be replaced by another one which is much better
than the initially leading technology. Interestingly, the speed
of the average increase in fitness is proportional to the vari-
ance in the fitness of technologies. Therefore, copying other
companies’ technologies alone does not support a persistent
innovation trend. Instead, diversity is the “motor” or “driving
force” of innovation.

Finally, we have investigated the effect of misperception
of the fitness of technologies. It turned out that mispercep-
tion can be neutral, but it can also speed up or slow down
technological evolution. Our results indicated that the aver-
age fitness will grow faster if the leading technologies are
systematically overestimated and the fitness of inferior tech-
nologies is underestimated. Therefore, excitement for new
technologies can speed up innovations even without higher
investments, just because of a bias in the perception of
fitness—i.e., a bias in the imitation behavior of superior tech-
nologies.
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